On the Extensions of the Darboux Theory of Integrability
نویسندگان
چکیده
Recently some extensions of the classical Darboux integrability theory to autonomous and non-autonomous polynomial vector fields have been done. The classical Darboux integrability theory and its recent extensions are based on the existence of algebraic invariant hypersurfaces. However the algebraicity of the invariant hypersurfaces is not necessary and the unique necessary condition is the algebraicity of the cofactors associated to them. In this note it is established a more general extension of the classical Darboux integrability theory.
منابع مشابه
Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملLocal Darboux First Integrals of Analytic Differential Systems
In this paper we discuss local and formal Darboux first integrals of analytic differential systems, using the theory of PoincaréDulac normal forms. We study the effect of local Darboux integrability on analytic normalization. Moreover we determine local restrictions on classical Darboux integrability of polynomial systems.
متن کاملInverse Problems in Darboux’ Theory of Integrability
The Darboux theory of integrability for planar polynomial differential equations is a classical field, with connections to Lie symmetries, differential algebra and other areas of mathematics. In the present paper we introduce the concepts, problems and inverse problems, and we outline some recent results on inverse problems. We also prove a new result, viz. a general finiteness theorem for the ...
متن کاملLocal integrability and linearizability of three-dimensional Lotka-Volterra systems
We investigate the local integrability and linearizability of three dimensional Lotka-Volterra equations at the origin. Necessary and sufficient conditions for both integrability and linearizability are obtained for (1,−1, 1), (2,−1, 1) and (1,−2, 1)-resonance. To prove sufficiency, we mainly use the method of Darboux with extensions for inverse Jacobi multipliers, and the linearizability of a ...
متن کاملMultiplicity of Invariant Algebraic Curves and Darboux Integrability
We define four different kinds of multiplicity of an invariant algebraic curve for a given polynomial vector field and investigate their relationships. After taking a closer look at the singularities and at the line of infinity, we improve the Darboux theory of integrability using these new notions of multiplicity.
متن کامل